7 AD=A098 %39 UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES DEPT OF==ETC F/6 9/2
MODULAR DESIGN OF OPERATING SYSTEMS USING ABSTRACT DATA TYPES.(u)
JUN 80 P B HANSENs J FELLOWS DAA629-77-G-0192

' UNCLASSIF!ED ARO=15037.2-EL

..l....... :

o

i o ¥

2
IIIII_'E'_

ez

MICROCOPY RESOLUTION TEST CHART 4
NATIONAL BURT AL OF STANDAR: . 1963 A

re
r

&

I

{
=

~
=
==

[
=

rr

| B
R
== =
[d N
s 0
L]

el

“ Ib

N A) ¥ ot >
MTY CLASMFICATION OF THIS PAGE (ihan fita Eiiived

CCY
REPORT DOCUMENTATION PAGE
. NUM 2, GOVYT ACCESSION NQJ 1. RECISENT'S CATALOG NUMBER
RLANK ' sLaNkAN-A411 {3 FANK
4. TITLE (and Sudeitie) 5. TYPEL OF REPORTYT & PEZNIOD COVERED
MODULAR DESIGN OF OPERATING SYSTEMS Ll
ABSTRACT DATA TYPES e
m + MITHORCS) A 2. CONTRACT OR GRANT NUMBLN(s)
(] wen/
D AAG29-77-G-0192

9
v PERF NG ORGANIZATION NAME ANﬂO AODRESS Py 10. ::gg"o“w‘l{'x‘:v‘a:‘?"'u':a‘:i'l gr ., TASK
[0 8) Computer Science Denartment LIL/ J6 =

| a Universitv of Southern California (/_ P-15037-M
| —-Los Anceles, Califarnia 90007

1. CONTROLLING QFFICE NAME ANDO ADDRESS 12. REPORT DATE .

& U. S. Army Research Office _June 1980
Post Qffice Box 12211 3. nuMBER OF PAGES
< Research Triangle Park, NC_ 27709 e
; a T SBRYoRinG ATEN ST NARE 8 ACONEINI7 Gftecast rom Conereiiing Office) | 15, SECTRITY CUARE (o7 toia repert
< Unclassified
‘ [a.usmc:mcm DOWNGRADING
BLANK SCHEOULE N/ A

16 ISTRMIBUTION STATEMENT (of thie Repert)

Approved for public release; distribution unlimited. DTIC

ELECTE
MAY 5 1981

17. NNETRISUTION STATEMENT (of the adetrest entered in Bleck 20, If dilferant frem Repert)

A D

76 SUPPL DAENTAAY NOTES
The view, opinions, and/or findings contained in this report are those of the

author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

19, KEY WOROS (Continue an olde i1 p N IGONIITY Oy SI0eR NUINBer)

Trio. Concurrent Pascal. Modular oroaramming

[N . %mmm-—-- obde ¥ vy emd idontify by beek mimber)

This reoort describes the Trio omeratinag svstem which enables

- users to simultaneouslv develoo and execute programs

C at three terminals. The svstem is written in C&ncurrent and
Seauential Pacal and has been used on a PDP 1l/ 55 mini comnuter

P . since Sorina 1979.

;’ "’;’ The Trio Svstem is not available r distribution. — |
E Y DD ,7om 3 WI3 covnow or 1 wov s 1s ossoLETE CLA&IFIED w _
!i SECUMTY CLASRIFICATION GF TwiS PAGE : o))

it w

e

Agoession :9_1-

e e e

NTIS GRAXI

DTIC TAB O

Unannounced O _
Justification— .} : !

e e

gzstribution K0 / 34 ,Z' £ L
e owtasty Gados @ ko @ 15437 o

“iAvail and/or -
Dist Special -

‘ | -
: @MODULAR QESIGN OF OPERATING SYSTEMS
= = r— Z :
i | USING ABSTRACT DATA TYPES,. %
z z =z = - ,

F . - . \,/" a ! ‘
L @ ‘} { |

/0 Per Brinch/ﬁansen : v :

S —and—

i Jonathan/Fellows

@F/ro@/ replts

U.S. ARMY RESEARCH OFFICE

5/

_ Contract No. DAAG29-77-G-8192 4
T i
Computer Science Department 1

’ University of Southern California

; Los Angeles, California 90007

DTIC

ELECTE
APPROVED FOR PUBLIC RELEASE; MAYS 1981
DISTRIBUTION UNLIMITED D

410617

This research tested recent ideas on the use of

abstract data types in concurrent programming by
implementing a multiterminal operating system for a
minicomputer. This system, named Trio, was implemented in
Concurrent Pascal, a 1language which makes it possible to
build a large concurrent program out of small modules that
can be programmed and tested one at a time. Trio has been
used by a team of graduate students for over one year. It
has proven to be a system that a single person can
understand fully, depend on for months without failure, anq
adapt easily to changing requirements. These desirable
properties of 1large programs are the most fundamental
objectives of all work in programming methodology.

The research had three major goals:

(1) To test the simplicity that may result from
using abstract data type§ in the design of realistic
operating systems.

Trio suprised its implementors by being simpler
than its single user predecessor (Solo;.

(2) To test how reliability can be improved by
checking access rights to data structures during
compilation and by testing operations on data structures

one at a time,

'y

During the development of Trio, only one error was

discovered that was not caught by compile time checks and

module tests.

(3) To set standards for the specification, design,
and documentation of non-trivial concurrent programs.

The following publications contain a complete
description of the design of Trio:

Brinch Hansen, P. and Fellows, J., The Trio Operating
System, Software - Practice and Experience 8, XXXXXXXXX

Fellows, J., The Trio User Manual. Computer Science
Department, University of Southern.California,
Los Angeles, CA, June 1984.

Fellows, J., Applications of Abstract Data Types -

the Trio Operating System. Computer Sclence Department,
University of Southern California, Los Angeles, CA,

(In preparation).

The authors of this report were the only scientific

personnel who participated in this research.

SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 10, 943-948 (1990)

The Trio Operating System®

PER BRINCH HANSEN AND JON FELLOWS

Computer Science Department, University of Southern Califormia, Los Angeles, California 90007,
Us.4d.

SUMMARY

This paper is an overview of the Trio system which enabies users to simultasnecusly develop
snd executs programs at three terminals. The system consists of an operating system writtsn
in Concurrent Pascal and a set of standard programs written in Sequential Pascal. The system
has beun used on 2 PDP 11/55 minicomputer since spring 1979. This work concludes § years of
experisnce with the first abstract langulige for concurrent programming.

xxy wosns Concurrent Pascal Operating syssm Trio

BACKGROUND

This paper is an overview of the Trio operating system which enables users to
simultaneously develop and execute programs at three terminals. The system consists
of an operating system written in Concurrent Pascal and a set of standard programs
written in Sequential Pascal. The system has been used on the PDP 11/55 minicom-
puter since spring 1979.

This work is a continuation of earlier work that led to the development and
implementation of the programming language Concurrent Pascal which includes
processes, monitors and classes.'

The focus of this research has been the concept of an abstract data type—the
combinstion of a data structure and all the possible operations on it into a single
program modulé. This concept contributes to simplicity by locating details of data
representation and trensformation in modules instead of spreading them throughout a
large program. It increases reliability by making it possible for a compiler to prevent
data structures from being destroyed by arbitrary operations.

So far Concurrent Pascal has been used to design a single-user operating system, a
job stream system, a resl-time scheduler, and 3 message passing system for s
multicomputer network.?~* [t has also been used to build several microcomputer
operating systems.

Each of these model systems has the following characteristics:

1. Each concurrent program consists of modules of less than one page each.

2. Each module consists of a data structure and a set of procedures which can be
called by other modules. These procedures provide the only means of changing

¢ This ressarch was supported by the Army Research Office under Contract No. DAAG-29-77-G-0192.

0038-0644/80/1110-0943%01.00 Received 21 Yuly 1980
® 1980 by John Wiley & Sons, Ltd.

i

944 PER BRINCH HANSEN AND JON FELLOWS

the data. This protection of data integrity is enforced during compilation only and
is not supported by run-time mechanisms.

3. Each module can only call the procedures defined within a small number of other
modules. The access rights of modules to the procedures of other modules are also
checked during compilation.

4. The modules are connected hierarchically to one another. So a module cannot call
itself indirectly through other modules. This too is verified by the compiler.

5. The modules were tested one at a time from the bottom towards the top (but may,
of course, be conceived top down). The compilation checks mentioned above
ensure that new (untested) modules do not make old (tested) modules fail.

6. Each of these programs was built and described in complete detail by a single
programmer in & matser of weeks.

The resulting systems have been more reliable than the hardware they run on.

The aim of the Trio system is to demonstrate the practicality of using the same
programming concepts to build an operating system of medium size. The following is
only an overview of the function and structure of Trio. The reader is referred to the user
manual for more detail.’

The Trio system is not currently available for distribution.

SYSTEM OPERATION

The Trio system is built for a PDP 11/55 minicomputer with 80 K words of store, a
disk drive (of 1 M words), a multiplexor with three aiphanumeric display terminals, a
magnetic tape drive and a line printer.

The Trio system permits three programmers to use the minicomputer simul-
taneously. The three users are assumed to be members of a (possibly larger)
programming team which is developing a set of related programs.

The programs of & user team are stored as text and code files on a removable disk
pack. The files that are used by the whole team are described in a single system catalog
on the disk, while thoee thst are still being developed are described in one or more user
catalogs. The system does not restrict a user to operste on the files of a single user
catalog. Multiple user catalogs are provided to enabie users to group their files into
convenient subclasses and t0 operate on different subclasses simuitaneously.

The system is opersted by the users themseives. Each session typically lasts an hour
or more. At the beginning of the session, the user team mounts its own disk pack and
starts the Trio system. Each user then sits down at one of the terminals and types a
command that gives him access t0 the files described in a given user catslog as well as the
files described in the system catalog.

A user can now input, compile, edit and test Psscal programs. When a program is
finished, the user can move its description from the given user catalog to any other
catalog (including the system catalog).

The users can make copies of text files on the line printer. But the system makes
display and editing of text st the terminals so convenient that the need for princed
listings is reduced considerably compared to the Solo system.

THE TRIO OPERATING SYSTEM 45

Itis posesible to copy the files of a single catalog (or the whole disk) onto magnetic tape
and use it to re-establish disk files after hardware or software failure.

The execution of a2 program can be pre-empted by depressing the bell key on a user
terminal. The system then displays the line number of the iast statement that was
executed in the program. This is a very convenient mechanism for locating endless
loops in new programs while they are being tested.

USER PROCESSES

In the single-user operating system Solo, concurrency could only be exploited by
performing the input, execution and output of s single program simuitaneously. In the
Trio system, simultaneity is achieved by the much simpler mesns of executing three
user processes simultanecusly. No attempt is made to perform the input/output and
program execution of a single-user process concurrently.

The concurrent program Trio resides permanen:iy in the main store together with

three user processes of fixed size. Each user process serves a singie user terminal.
A user process executes a cyclical Pascal program calied ‘do’ which accepts
’ commands from the corresponding terminal. Each command specifies the execution of
a Pascal program with a set of arguments of type identifier, integer or boolean. The
given program is loaded from the disk and executed as a procedure cslled by the do
program. Any Pascal program can call any other Pascal program sctored on the disk by

means of a standard procedure ‘run’ implemented by the operating system.

N The overating system maintains & set of booleans which represent the resources
shared by the user processes. These resources are primarily the line printer, the
magnetic tape and the disk. A standard procedure ensbies s user program to request
and release exclusive sccess 0 any subset of these resources. Within the operad
systemn these resources are acquired one by one in fixed order to prevent deadlock.
When a user program is pre-empted by depressing the bell key, the operating system

. automatically relesses all resources requested but not yet relessed by the given user

: process.)

The processor is treated as a composite resource which consists of three processor

o sllares—one for each user process. When a user types a command to the do program the

latter requests exclusive use of the corresponding processor share hefore executing the
program named by the command. When that program terminates or fails, the do
program temporarily releases the processor share again. When 3 user wishes to execute
a concurrent program he needs exclusive access to the whole machine. This is achieved
by requesting the use of all three processor shares—an action that delays the execution
of the concurrent program until the other user processes have compieted their current
execution of programs.

The interface between the Trio system and any of its user programs is a set of
procedures that are implemented by the operating system and are called by the user
programs. The names and parameter types of these procedures are defined by a piece of
text, called the prefix, which is put in front of every user program before it is compiled.

These procedures give esch user program simultaneous access to at most four
sequential files. Two of these files are text files that are read and wrirten character by

_character. The others are files that are input and output in blocks called disk pages.

946 PER BRINCH HANSEN AND JON FELLOWS

Other procedures enable programi to use the terminals, to create and delete files on the
disk, and to call other programs stored on the disk. We have tried to make this interface
much more convenient to the programmer than the interface of the Solo system.

FILE SYSTEM

The file system is the most critical part of the operating system. Not only is it the long-
term storage of the users, but it also resides on a mechanical device that is several orders
of magnitude slower and much less reliable than the computer itself.

The Trio file system is an extension of the Solo file system.

To avoid occasional, but time-consuming relocation of data on the disk, the pages
allocated to a single file are addressed indirectly through a page map—a single disk page
which defines the addresses of the data pages of the file. The page map allows the
operating system to place the data pages anywhere on the disk and let them remain there
until the file is deleted.

The system cartalog is a file that starts at a fixed disk address and describes the name
and attributes of all common files (including itself). The attributes of a file are the disk
address of its page map, its protection status (true or false), and its kind (scratch, text,
code or catalog).

Each user catalog is described in the system catalog as a file of type ‘catalog’. At the
beginning of a terminal session, all file names used within a user process are looked up
in the system catalog. A user can now select a given user catalog by name. Following
this, all file names used by the corresponding process are first looked up in the given
user catalog, and (if that fails) they are then looked up in the system catalog. The set of
catalogs that are used by a process at any given time is known as its current catalog set.

A file is opened by looking it up in the current catalog set and bringing its page map
into the main store. The file is looked up by converting its name to a hash key that
defines the starting point of a cyclical search in one of thé catalogs.

Since each user team has its own removable disk pack with a separate user catalog for
each programmer (or subtask), files need only be protected against accidental
overwriting and deletion. All files are initially unprotected. The user protects a file by
calling a standard program which sets the protection boolean in the file attributes to
true.

The Trio file system then is a hierarchical system with three levels. The first level is
the system catalog which describes common files and user catalogs. The second level
consists of the user caralogs which describe disjoint classes of user files. And the third
level consists of the user files. Descriptions of files can be moved freely from any catalog
to any other catalog. The protection facilities are minimal and do not prevent users
from operating simultaneously on the same files in a time-dependent manner.
Although this philosophy is adequate for program development from a small number of
terminals, it is not secure enough for a general time-sharing system.

We would like to emphasize that since small operating systems become inexpensive
when they are written in abstract programming languages, one can afford to tailor each
of them for a single purpose. We have followed this approach in designing an operating
system that is convenient for a computer with three user terminals. But we have made

no attempts to make the same design applicable to larger systems with five or ten
terminals.

THE TRIO OPERATING SYSTEM 947

SIZE AND PERFORMANCE

The Trio system consists of a Concurrent Pascal program and a set of standard
programs of the following lengthas:

Trio program 1,600 lines
Do program 500 —
File program 900 —
Edit program 900 —
Canalog programs 2,700 —
Device programs 1,900 —
Other programs 700 —
New programs 9,200 lines

ilers 17,000 —
Total system 26,200 lines

The design of the system was started in the spring of 1978 by the authors. The initial
implementation was done over a period of 1 year by a graduate student (Jon Fellows)
who was unfamiliar with Concurrent Pascal to begin with. During 1979 the system was
used experimentally and tuned. We estimate that a full-time programmer who knows
Concurrent Pascal could have done it in 6~-8 months. By comparison Solo was
developed in 3 months.

The compilers for Concurrent and Sequential Pascal were moved from the Solo
system with minimal changes.

Trio requires a main store of 80 K words which is used as follows:

Concurrent Pascal kernel 4 K words
Operating system 7 K words
User processes 69 K words
Main store 80 K words

A text file can be created or deleted in 1-2 s depending on its length (<128 K char).
It can be opened in 240 ms and then read or written at the rate of 1000 char/s. The
overall performance of the system for non-trivial processing can best be illustrated by
the compilation time which is 13 s+ 3 ms/char for a single user. When two users are
compiling simultaneously, the compilation time for each of them becomes
23 s+ 5 ms/char. The compilation time reaches 35 s+ 7 ms/char when all three users
are compiling simultaneously (a very unlikely situation). This means that the operating
system itself (of 1600 lines) can be recompiled in 2-5 min.

These execution times are primarily limited by the speed of code interpretation and
to a lesser extent by the slow disk. The compilers generate abstract code which is
interpreted by the well-known technique of ‘threaded code’.

FINAL REMARKS
In a recent book? one of us said this:

“The operating systems written so far in Concurrent Pascal are small. 1
would hope (and expect) that 2 larger system will turn out to be ‘more of
the same.’ But it seems worthwhile to confirm this by using Concurrent
Pascal to build a medium-size operating system, for example, a terminal
system that gives each user the capability of Solo.’

948 PER BRINCH HANSEN AND JON FELLOWS

Well, we have done it now and it was more of the same. The real surprise was that
Trio in many ways turned out to be simpler than Solo! This concludes 5 years of
experience with the first abstract language for concurrent programming. The
underlying concepts of processes, monitors and classes can now be regarded as proven
tools for software engineering. So it is time to do something else.

ACKNOWLEDGEMENT

Habib Maghami derived a single-user version of Trio known as the Mono system. This
work has been supported by the Army Research Office under contract
DAAG-29~-77-G-0192.

REFERENCES

1. P. Brinch Hansen, ‘The programming langusge Concurrent Pascal’, /EEE Trans. on S;ofmcn
Enginesring, 1 (2), 199-207 (1975).

2. P.ggrinch Hansen, “The Solo operating system’, Software—Practice and Experience, 6 (2) 141-205
(1976). .

3. P. Brinch Hansen, The Architecture of Concurvent Programs, Prentice-Hall, Englewood Cliffs, N.]J.
1977. ‘)

4. P. Brinch Hansen, ‘Network: a multiprocessor program’, IEEE Trans. on Software Enginesring, 4 (3)
(1978). .

5. J. A, Fellows, The Trio User Manual, Computer Science Department, University of Southem
California, Los Angeles, CA., 1980.

6. P. Brinch Hansen, Operating System Principles, Prentice-Hall, Englewood Cliffs, N.J. 1973.

-~ ¢ B

